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Abstract

Despite recent advancements in image generation, diffusion models still remain
largely underexplored in Earth Observation. In this paper we show that state-of-the-
art pretrained diffusion models can be conditioned on cartographic data to generate
realistic satellite images. For this purpose, we provide two large datasets of paired
maps and satellite views over the region of Mainland Scotland and the Central Belt.
We train a ControlNet model and qualitatively evaluate the results, demonstrating
that both image quality and map fidelity are possible. Additionally, we explore its
use for the reconstruction of historical maps. Finally, we provide some insights on
the opportunities and challenges of applying these models for remote sensing.

O
pe

nS
tre

et
M

ap

Satellite image Generated Synthetic Samples

U
K

 1
88

8 
M

ap

Figure 1: Examples of synthetic satellite images generated with diffusion models conditioned on
OSM and UK-1888 maps (test set). The real sat. images are provided as reference (2nd column) but
they are not used at inference. We cover a wide landscape diversity (urbanised and rural areas).

1 Introduction

High-resolution satellite imagery provides valuable insights into Earth’s surface changes. Yet, making
such images publicly available brings up privacy and legal concerns [7]. In addition, they are costly
to acquire, come with increased usage restrictions for end users, and capture relatively small areas in
each image. This fact, hinders the release of public datasets and slows down research in the field of
Earth Observation (EO).

The generation of realistic synthetic high-resolution satellite imagery is a timely task that mitigates
these concerns and opens up new possibilities. Furthermore, having a fine-grained control of the gen-
eration process allows us to create new labelled datasets without the need for human intervention for
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a wide variety of downstream tasks (object detection, segmentation, image classification, adversarial
training, anomaly detection), and to augment existing ones for data-scarse situations. Such synthetic
datasets enable pretraining backbone models on larger amounts of data (usually followed up by a
final fine-tune stage to account for the distributional shift). In addition, recent work [14] show model
improvement when training on a mixture of synthetic and real imagery.

Satellite image generation is a challenging task due to the complexity of natural scenes (fine details
and textures), and the constantly varying conditions (weather, seasonality, lighting, vegetation). Only
recent developments in diffusion models have enabled high-quality image generations. Moreover,
when the generation is required to follow a specific layout (i.e. a map), it needs to encode its semantics,
and the spatial relationship of the objects in the scene in order to synthesize a consistent image.

We generate high-quality high-fidelity satellite images conditioned on present and historical carto-
graphic data. For this purpose we create a large dataset of paired images and train a ControlNet
model. Lastly, we provide insights on the opportunities and challenges of using diffusion models for
the remote sensing community.

2 Background

Generative models have significantly improved in recent years. Several works have explored their
use for synthetic image generation [19], image-to-image translation [13], and data augmentation [2].
However, in the EO domain the focus has predominantly been on more traditional models, such as
Generative Adversarial Networks (GANs) [9]. While GANs have shown notable results in multiple
EO tasks (super resolution [8, 23], de-speckling [24], pan-sharpening [17], image generation [14, 18],
haze or cloud removal [12]), they suffer from training instability and model collapse, which can lead
to the generation of low quality images [5].

Diffusion models [22, 10] have emerged as promising alternatives, using stochastic processes to model
the data distribution. Previous work has explored the use of diffusion models in the EO domain for
diverse applications such as super resolution [16], change detection [6], and image augmentation [1].
Recent work such as ControlNet [26] allows for better control over the generation process by adding
input conditions while still produce high-quality results. The use of such conditioned diffusion
models in remote sensing remains unexplored, creating a gap that our work aims to address.

In the multi-modal context, previous work has explored the use of paired datasets combining different
types of remote sensing data [25, 21, 11, 15]. However, the use of cartographic maps as an additional
data source remains underexplored.

3 Datasets

To demonstrate the effectiveness of pretrained diffusion models in remote sensing, we construct two
specific datasets for the training procedure. Instructions and code for the dataset creation can be
found in https://github.com/miquel-espinosa/map-sat. Further details in Appendix A.

4 Method

We use the ControlNet [26] architecture to train a model capable of generating realistic satellite
images from OSM/UK-1888 tiles. ControlNet is designed to augment pretrained image diffusion
models by allowing task-specific conditioning. It has the ability to manipulate the input conditions of
neural network blocks1, thereby controlling the diffusion process. Intuitively, it can be seen as a way
of injecting explicit guidance on the denoising process, conditioning the outputs on some reference
image, in addition to the text prompt. Further details on the model architecture and on the training
procedure are provided in Appedix B.

The best performing model, trained on the Central Belt dataset, is publicly available at https://
huggingface.co/mespinosami/controlearth. We also publish the model trained on Mainland
Scotland at https://huggingface.co/mespinosami/controlearth-sct.

1A network block in this context refers to any set of neural layers grouped as a frequently-used unit for
building networks, such as a ResNet block, conv-bn-relu block, and transformer block, among others.
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5 Analysis

We carry out a qualitative analysis of our results, mainly involving the visual inspection of the
generated satellite images. This lets us evaluate more subjective elements such as colour consistency,
spatial coherence and feature representation, which are often hard to quantify numerically. We include
a selection of examples in Figures 1 and 2 that demonstrate the model’s capabilities under different
conditions (best viewed up close, in colour). More examples are provided in Appendix C.
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Figure 2: Examples of synthetic sat. images generated with diffusion models conditioned on OSM
and UK 1888 maps (test set). The real sat. images are provided as reference (2nd column) but they
are not used at inference. Note that historical maps do not always match with the satellite images.
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One of the desirable behaviours that the trained model exhibits is the diversity of samples given the
same map. This shows that the model has learnt to encode the variances found in the map classes
(e.g. forests), thus, successfully captured the complexity of the dataset, instead of collapsing all
generations to the same image. A more detailed analysis can be found in Appendix C.

In Appendix D we compare the quality of the results when training with different datasets, and
Appendix E outlines some failure cases.

5.1 Reconstruction of historical maps

As it can be seen in Figure 2, more often than not, satellite images do not match with the georeferenced
historical maps due to the time difference (more than 100 years). Nonetheless, after training the
model with a large "semi-paired" dataset we observe consistent generations that closely follow the
map layout. These results enable the aerial and realistic reconstruction of places that could have never
been captured by a satellite, being a window to past. This is of particular relevance for historians and
archaeological research, aiding their visualisations and scene understanding.

6 Discussion

The use of generative diffusion models in remote sensing still remains in its early stages. However,
the results presented in this study highlight their potential.

Opportunities: This approach enables the enhancement of existing datasets, by extending the number
of samples. This is particularly useful for low-data regimes or scenarios where data collection can
be expensive. Similarly, it can be utilised in the data augmentation step of any training pipeline.
Given the diversity and realism of the generated samples it is a strong tool to ensure robustness
and generalisation in models. Furthermore, the ability to synthesise high-resolution images that
closely follow a specified layout (i.e. map) can be used to complement private datasets, providing a
means to increase data accessibility without compromising confidentiality. Lastly, there exist multiple
image-to-image use cases where this method could prove useful, for instance cloud or haze removal.

Challenges: As the quality of synthesised satellite imagery improves, concerns around misuse and the
propagation of fake satellite images arise. The creation of fake satellite images or its manipulation
could have harmful consequences in emergency situations, or in geopolitical events. Alongside the
development of this technology, there needs to be a concurrent effort on creating regulations and
ethical guidelines. On the other hand, our method is capable of creating adversarial samples (i.e. fake
satellite images that resemble realistic ones), thus, it can be leveraged to create adversarial datasets.
Such datasets could be used to train models for the detection of fake or manipulated satellite imagery.

Future work: The current method struggles with finer structures and undersampled classes (see
Appendix E), providing room for improvement in those scenarios. Secondly, we aim to expand the
current dataset by: including a wider set of modalities increasing the representational diversity (such
as GIS information, DEMs, land cover data, more varied text prompts), expand its geographical
coverage (to more diverse habitats and climatic regions), and develop a new sampling strategy (based
on land cover maps and population density). A more complete dataset will allow for the improvement
on the challenging situations across a wider range of regions. And a multi-modal dataset will enable
to condition the generation process on other data modalities. Furthermore, it remains unexplored
the possibilities of using different and more diverse text prompts in the generation process (for
instance, for controlling seasonality changes or other weather conditions). Finally, another exciting
direction is enabling consistent generation of larger maps with a smooth tiling transition. We plan to
explore iterative hierarchical generation or style conditioning as possible methodologies to achieve
this objective. Such method would open possibilities for artists and content creators.

7 Conclusion

We have demonstrated that state-of-the-art diffusion models can be used to generate realistic satellite
images conditioned on maps. For this purpose, we create a large dataset containing pairs of maps and
satellite images for Mainland Scotland and the Central Belt regions. We successfully train ControlNet
models and provide insights on the results obtained. Finally, we outline some possible directions for
improvements, and discuss the potential of generative methods in the field of EO.
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A Datasets description

The multi-modal dataset pairs 256× 256 OSM/UK-1888 image tiles with corresponding 256× 256
World Imagery [4] satellite image tiles. We use a fixed text prompt “convert this openstreetmap/old
map into its satellite view” for the pretrained SD model. The area considered in this study is mainland
Scotland. The sampling strategy consists of random sampling over a predefined region.

We carry out experiments on multiple datasets, that is, sampling across different regions (Figure 3):
(1) all of Mainland Scotland, and (2) the Central Belt region. The motivation behind sampling across
different regions is to account for unbalanced geographic features; Mainland Scotland is dominated
by rural areas, forests, mountain ranges, and fields whereas the Central Belt region has a much larger
representation of human-made structures like buildings, roads, and other features found in larger
cities. The Mainland Scotland dataset contains 78,414 training pairs of images, and the Central Belt
dataset 68,195 training pairs (with an additional 20% of test pairs for each case).

Figure 3: Sampling regions used for the dataset construction. We visualise some pair examples
(map, satellite img). Mainland Scotland is largely rural, whereas the central belt has build up cities
including Edinburgh and Glasgow.

We use OpenStreetMap tiles, UK-1888 map tiles and World Imagery satellite images, both at a
zoom level of 17. For the central belt region, we explore two products from the free World Imagery
service as provided by ArcGis Online: the latest World Imagery version and the older Clarity version
(deprecated) [3]. We find that the Clarity version retains more detail and higher image quality, so we
train our models on both versions for a comparative evaluation (note that World Imagery products are
composites compiled from different sources and providers, resulting in varying resolutions across
locations).

B ControlNet details

Given a feature map x ∈ Rh×w×c where {h,w, c} represent height, width, and channel numbers
respectively, a neural network block F(·; θ) with a set of parameters θ transforms x into another
feature map y via the relation y = F(x; θ).

Crucially, as Figure 4 illustrates, ControlNet [26] keeps the parameters θ locked, cloning it into a
trainable copy θc which is trained with an external condition vector c. The idea behind making such
copies instead of directly training the original weights is to mitigate overfitting risks in small datasets
and being able to reuse larger models trained on billions of images.

An important innovation is the introduction of a zero convolution layer to connect the frozen network
blocks and the trainable copies (Figure 4). Zero convolution is a 1× 1 convolution layer with both
weight and bias initialised as zeros. Note that ControlNet initially will not affect the original network
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at all, but as it is trained, it will gradually start to influence the generation with the external condition
vectors.

trainable copy

zero convolution

zero convolution

c

x

neural network
block (locked)

y ControlNet

Figure 4: ControlNet network blocks with "zero convolutions" (1× 1 convolution layer with both
weight and bias initialised to zeros). Figure adapted from the original work [26].

B.1 ControlNet for Satellite Image Synthesis

We use the ControlNet architecture, along with a large pretrained diffusion model (Stable Diffusion)
to translate OpenStreetMap images into realistic satellite images.

We follow the same training process as in the original ControlNet architecture [26]. Our model
progressively denoises images in the perceptual latent space to generate samples. It learns to predict
the noise added to the noisy image, and this learning objective is used in the fine-tuning process of
the entire pipeline.

As the Stable Diffusion (SD) [20] weights are locked, the gradient computation on the SD model can
be avoided, which accelerates the training process and saves on GPU memory. Leveraging a large
pretrained diffusion model not only improves computational efficiency, but also yields higher-quality
results.

B.2 Training and inference details

We carry out multiple experiments with different pretrained large diffusion backbones. Specifically
we experiment with two different versions from Stable Diffusion: v.1-5, and v.2-1. We find that SD
version v.1-5 tends to give better results. Experiments are run on a cluster node of 8 A100 40GB
GPUs. The batch size is set to 2048 for 250 epochs. The training time is approximately 8 hours and
the learning rate is kept constant at 0.00001. During inference, images are sampled with 50 inference
steps (further increasing the number of inference steps doesn’t have a noticeable impact on image
quality), and it takes 2-3 seconds per image.
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C Examples of generated satellite images

Rows 1-4 in Fig. 5 illustrate seasonality changes in the different samples. Similarly, other variances
are also perceivable, such as weather phenomena, lighting conditions and human activity. Rows 5-8
are examples for water bodies of multiple sizes, such as rivers, human-made canals, and open sea in
coastal regions. Lastly, rows 9-11 show urban areas and more elaborate human-made patterns which
the model is able to closely follow.

OpenStreetMap Satellite image

(1
)

Generated Synthetic Samples

(2
)

(4
)

(3
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

Figure 5: Examples of synthetic satellite images from the trained model conditioned on maps. All
images shown correspond to the test set. The real satellite images are provided as reference (second
column) but they are not used at inference. Rows 1-4 show agricultural land, forests and bare areas.
Rows 5-8 illustrate water bodies at varying sizes. Rows 9-11 correspond to different man-made
structures, which condition the generation with more intricate patterns.
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D Dataset quality comparison

As discussed in Section 3, we train the same model on two different versions of the central belt
dataset (one with World Imagery updated product, and the other with the deprecated Clarity version).
Figure 6 provides a comparative visual analysis of two identical ControlNet models, both subjected
to the same training parameters but on the two distinct datasets. As it can be observed, the deprecated
Clarity product shows finer details and superior image quality. Therefore, it becomes evident that
the quality of the learned representations is heavily influenced by the quality of the training data
employed.

Openstreetmap GT World Imagery GT ClarityModel World Imagery Model Clarity

Figure 6: We illustrate the quality differences when training the same model with World Imagery and
Clarity datasets over the Central Belt area. GT stands for Ground Truth, i.e. the real satellite images.
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E Failure cases

Some failure cases are shown in Figure 7. Large roads, specially those with lanes and straight lines are
found challenging by our model. Equally, intersections and road overpasses are difficult to generate
coherently. Rivers are easily mistaken by roads in some of the samples, and we show a failure case for
a larger water body, where it is confused by a building (possibly due to its polygonal shape). Lastly,
we also visualise railroads as challenging scenarios. These occurrences can largely be attributed to
the under-representation in our dataset of the specific scenarios.
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Figure 7: Failure cases for more challenging scenarios (which usually correspond to under-represented
cases in the dataset, such as larger railways, coastal regions, or road intersections). The real satellite
images are shown in the second column for comparative purposes.
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