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We present PlainMamba: a simple non-hierarchical state space model (SSM) designed for general visual recognition.
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se because of their simple structure. We investigate the potential of the plain Mamba model in visual recognition.
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e PlainMamba has a non-hierarchical design:
o A convolution tokenizer
o Astack L identical PlainMamba blocks
o Atask-specific head for downstream tasks
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e The model maintains:

Liear o constant width throughout the layers

Figure 2a. Architecture of PlainMamba

Figure 2b. PlainMamba Block Architecture

o constant feature resolution

Figure 2c. Direction-Aware Updating making it easy to reuse and easy to scale.
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Figure 3. Comparison between our Continuous 2D Scanning and the selective scan orders in ViM and VMamba
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Figure 4. Efficiency comparison between PlainMamba and DeiT
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Figure 5. Comparison between PlainMamba and
SSMs on ADE20K Semantic Segmentation

Figure 5. Comparison between PlainMamba and
SSMs on ImageNet-lK (*denotes best epoch result)
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